Asymptotic Nearness of Stochastic and Doubly-Stochastic Matrices

نویسنده

  • Peyman Milanfar
چکیده

We prove that the set of n×n positive (row-)stochastic matrices and the corresponding set of doubly-stochastic matrices are asymptotically close. More specifically, random matrices within each of these classes are arbitrarily close in sufficiently high dimensions. AMS 2000 subject classifications:Primary 15A51,15A52,15A60, Stochastic Matrices. Let Sn denote the set of n × n stochastic matrices with positive entries, and define 1 as the n× 1 vector of ones. By definition, any A ∈ Sn satisfies A1 = 1. (1) The Perron-Frobenius theory of positive matrices Seneta (1981); Horn and Johnson (1991) provides a comprehensive characterization of the spectrum of such matrices. Namely, denoting {λi}i=1 as the eigenvalues, we know that 1. λ1 = 1 is the unique eigenvalue of A with maximum modulus; 2. λ1 corresponds to positive right and left eigenvectors v1 and u1 where

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

Double-null operators and the investigation of Birkhoff's theorem on discrete lp spaces

Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null  operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...

متن کامل

On backward product of stochastic matrices

We study the ergodicity of backward product of stochastic and doubly stochastic matrices by introducing the concept of absolute infinite flow property. We show that this property is necessary for ergodicity of any chain of stochastic matrices, by defining and exploring the properties of a rotational transformation for a stochastic chain. Then, we establish that the absolute infinite flow proper...

متن کامل

Directed graphs, Hamiltonicity and doubly stochastic matrices

We consider the Hamiltonian cycle problem embedded in singularly perturbed (controlled)Markov chains. We also consider a functional on the space of stationary policies of the process that consists of the (1,1)-entry of the fundamental matrices of the Markov chains induced by the same policies. In particular, we focus on the subset of these policies that induce doubly stochastic probability tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011